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Kondo resonances for transition-metal-atom impurities in a metal host have been analyzed by means of an
ionic model as a function of the impurity d-orbital occupancy. The ionic Hamiltonian has been obtained by
making use of the atomic Hund first rule. This Hamiltonian has been solved using a Green-function equation
of motion method up to second order in the transition metal–host interaction. We find Kondo temperatures that
decrease with the atomic total spin, the largest one appearing for charge fluctuations d0↔d1 and d10↔d9, in
good agreement with the experimental evidence.
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I. INTRODUCTION

Kondo related problems are still a central issue in many-
body condensed matter. In the earliest approaches, an
Anderson-like Hamiltonian1,2 was introduced to model
Kondo impurities; in this Hamiltonian, a spin degenerate
level with a large intrasite Coulomb interaction U is resonat-
ing with a metal band. Kondo-like properties are crucially
dependent on the strong electron correlation effects associ-
ated with this twofold degenerate level and its large U. This
problem has been analyzed using many different techniques
and the reader is referred to Ref. 2 for a complete discussion
of their different �exact and approximate� solutions. It has
been a great success of nanoscience to find the realization of
these systems in the quantum wells fabricated using different
techniques.3

In more conventional condensed matter physics, Kondo
resonances have been found in the interplay between the d
orbitals �f orbitals� of transition �rare-earth� metal impurities
and the surrounding electrons of a metal band. The analysis
of these impurities has not yet been fully developed except
for the N-fold degenerate case described by the Hamiltonian

H = �
k,�

�kck�
+ ck� + E0�0,0��0,0� + �

�

E1�1,���1,��

+ �
k�

Vk��1,���0,0�ck� + Vk�
+ ck�

+ �0,0��1,�� , �1�

where ck�
+ denotes the creation operator of the conduction

electron having momentum k and angular momentum �,
�0,0� the nondegenerate ground state of the atomic system,
and �1,�� its excited N-degenerate levels. Hamiltonian �1�
has been used to analyze the Kondo resonances of Ce 4f1

�N=6� and Yb 4f13 �N=8�, systems for which electron fluc-
tuations appear between the atomic states f0 and f1, and f14

and f13, respectively.2 In the exact solutions of Hamiltonian
�1� for large N, the Kondo temperature TK has been found to
be proportional to D�N� /�D�1/N exp�−���0� /N��, where

�0=E1−E0−EF, � is the impurity one-electron linewidth, 2D
the bandwidth of the conduction electrons, and EF the Fermi
energy.2

The Kondo problem associated with a transition or a rare-
earth metal atom has to be analyzed, however, considering a
more general Hamiltonian, similar to Eq. �1� but having a
ground state with a given degeneracy larger than 1 and de-
fined by the particular atom under study.4 This is the ionic
model of Hirst5 that has not yet been studied as much as the
Anderson model.

On the other hand, recent experimental evidence points
out to the need to understand what happens for the more
general case just mentioned. In particular, using scanning
tunneling spectroscopy,6–11 Jamneala et al. have studied sys-
tematically the low-energy excitations of different impurity
elements across the 3d row of the Periodic Table, adsorbed
on a Au�111� substrate at 6 K, finding impurity trends while
varying parameters such as d-orbital energy and d-orbital
filling. In particular, they found that atoms near the middle of
the 3d row, such as V, Cr, Mn, and Fe, show no discernible
features of the local density of states �LDOS� at low energy,
while atoms near the ends of the row, such as Ti, Co, and Ni,
show narrow resonances near the Fermi energy.11 Their mea-
surements confirm the trends of previous measurements for
ensembles of magnetic impurities, where it was found that
the Kondo temperature is lower for elements located near the
middle of the 3d row and higher for elements near the ends
of the row.12 The spectroscopic features of these impurities
can be interpreted as a mixture of the bare d resonance and
the Kondo resonance, but questions remain concerning the
reason why particular d resonances appear and others do not.

Recently, in the conduction of single molecule transistors
based on transition metal coordination complexes, reso-
nances with Kondo temperatures in excess of 50 K, compa-
rable to those in pure metallic systems,13 has been reported.
A gate dependence of TK, which is inconsistent with obser-
vations in semiconductor quantum dots and a simple single-
dot-level model, has also been reported. An important con-
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clusion is that intramolecular exchange cannot be neglected
in these devices, and that a complete understanding will re-
quire more sophisticated models �such as the ones mentioned
above� and further measurements.13

In this work, we present an ionic model for analyzing the
behavior of the Kondo resonances as a function of the d
filling of transition metal impurities that reproduces the
trends observed experimentally. Our main assumption is that
the exchange energy is large enough to determine the atomic
low-energy electronic configurations �first Hund rule�. Based
on this assumption, we deduce an ionic model Hamiltonian
that generalizes Eq. �1� and then, by means of an approach
based on the equation of motion method, we calculate TK and
the associated LDOS.

II. THEORY

The general form of our initial Hamiltonian is as follows:

H� = �
k,�

�kn�k� + �
m,�

�mn�m� + �
m

Udn�m↑n�m↓

+
1

2 �
m�m�,�

Jdn�m�n�m�−� +
1

2 �
m�m�,�

�Jd − Jd
x�n�m�n�m��

−
1

2 �
m�m�,�

Jd
xc�m�

+ c�m−�c�m�−�
+ c�m�� + �

km�

�Vkm
� c�k�

+ c�m� + c.c.�

+ �crystal field terms� , �2�

where c�k�
+ and c�m�

+ denote the creation operators of the con-
duction electrons and the localized d electrons in the orbital
m with spin �, respectively. The intra-atomic Coulomb inter-
actions Ud and Jd and the intra-atomic exchange interaction
Jd

x for the localized d orbitals are assumed to be constants
independent of the m-orbital index. The sixth term related
with spin-flip processes restores the invariance under rotation
in spin space, and the Vkm

� are the couplings between conduc-
tion and localized electrons. The crystal field terms respon-
sible for the crystalline splitting are not given explicitly be-
cause they are expected to be small for d electrons
�compared with the energies associated with the first Hund
rule�.

Assuming the exchange interaction Jd
x, to be large enough

for the first Hund rule determines the atomic lower energy
configuration, we obtain the following atomic states as a
function of the d level occupation n=0, . . . ,5 electrons
�cases n=6, . . . ,10 will be discussed below�:

n = 0 → one state ���0
0 = �0,0,0,0,0� ,

n = 1 → the five states ���1
i

= �↑,0,0,0,0�; �0,↑,0,0,0�; . . . ; �0,0,0,0,↑� ,

as well as all the states with spin down corresponding to a
total spin S=1 /2 �5	2 states�;

n = 2 → the ten states ���2
j

= �↑,↑,0,0,0�; �↑,0,↑,0,0�; . . . ; �0,0,0,↑,↑�

and all the states obtained by rotating the total spin direction
S=1 �10	3 states�;

n = 3 → the ten states ���3
p

= �↑,↑,↑,0,0�; �↑,↑,0,↑,0�; . . . ; �0,0,↑,↑,↑�

and the states obtained by rotating S=3 /2 �10	4 states�;

n = 4 → the five states ���4
q

= �↑,↑,↑,↑,0�; �↑,↑,↑,0,↑�; . . . ; �0,↑,↑,↑,↑�

and the states obtained by rotating S=2; �5	5 states�;

n = 5 → the one state ���5
r = �↑,↑,↑,↑,↑�

and the states obtained by rotating S=5 /2; �1	6 states�.
Associated with the degeneracy just discussed, we con-

struct states �S ,M�
 where S=0, 1 /2, 1, 3 /2, 2, and 5 /2 for
n=0, 1, 2, 3, 4 and 5, respectively. Superindex 
 denotes the
different combinations of atomic states for a given d shell
occupation �
= i , j , p ,q ,r; with i=1, . . . ,5; j=1, . . . ,10; p
=1, . . . ,10; q=1, . . . ,5, and r=1 for S=1 /2, . . . ,5 /2, respec-
tively�.

By using these states, the atomic part of the Hamiltonian
is

H� atomic = �
SM


�S
�S,M�
�S,M�
. �3�

The �S
 are calculated according to Hamiltonian �2�. For
instance,

�5/2,
 = �
m�
�

�m + 10Jd − 10Jd
x ,

�2
 = �
m�
�

�m + 6Jd − 6Jd
x, and so on.

In this atomic basis set �S ,M�
, the interacting Hamiltonian
�

km�

�Vkmc�k�
+ c�m�+c.c.� takes the form

Ĥint = �
k.SM,��

�c�k↑
+ �S − 1/2,M − 1/2���S,M��Vk�SM,��� + c.c.�

+ �
k.SM,��

�c�k↓
+ �S − 1/2,M − 1/2���S,M − 1��Ṽk�SM

− 1,��� + c.c.� �4�

in such a way that electrons are transferred from the atom
to the metal �k state with spin up or down�, or the other
way around. Notice that the process of transferring �taking�
one electron to �from� the metal changes S and M by
1 /2. Equation �4� generalizes the interacting part of Hamil-
tonian �1� to the problem we are considering. The matrix

elements Vk�SM ,��� and Ṽk�SM −1,��� can be written

as Vk�SM ,���=Vk	5�S+M� /2S and Ṽk�SM −1,���
=Vk�S ,−M +1,���=Vk	5�S−M +1� /2S by assuming, for
the sake of simplicity, Vkm=Vk �in a more general case, Vk
should be replaced by Vk

eff depending on the particular values
of Vkm�. All these elements are better described by the dia-
grams of the Appendix that include all the possible couplings
between the SM states normalized to 	5Vk.

One has to realize that the actual states coupled to each
other depend on the starting Hamiltonian. For instance, the
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�2,2� state coupled to �5 /2,5 /2� has to be obtained by apply-
ing Hint to �5 /2,5 /2�; this procedure has to be repeated at
each step to calculate all the different wave functions defin-
ing the diagrams shown in the Appendix. Moreover, the dif-
ferent diagrams correspond to different spin fluctuations: in
particular, the first one represents a fluctuation between
S=5 /2 and 2, the next one represents fluctuations between
S=2 and 3 /2, and so on. This means that, in our approxima-
tion, we are only considering total spin fluctuations of 1 /2
�which is equivalent to taking an infinite-U effective Hamil-
tonian, with the number of electrons in the atom being al-
lowed to fluctuate only by one�.

Hamiltonians �3� and �4� have been solved by using a
Green-function equation of motion technique up to second
order in the coupling parameter Vk. Although this technique
is not as accurate as the renormalization group14 or quantum
Monte Carlo.15 it provides a very convenient and intuitive
way for solving our model Hamiltonian �4�. Our Green-

function definition in terms of the projector operators is as
follows:

GS1/2,M1/2,

SM,� �t,t��

= i��t� − t����S,M���S  1/2,M  1/2�t�

 , �S

 1/2,M  1/2�
�S,M�t
��� , �5�

where �S ,M�� and �S1 /2,M 1 /2�
 are the states coupled

by Vk�SM ,
�� or Ṽk�SM −1,
��. In Eq. �5�, �A ,B� repre-
sents the anticommutator of operators A and B.

We present results for the case �S
=�S independent of the
m orbitals occupied in the 
 state; we also present results for
Vkm=Vk, also independent of the orbital m. In this case, we
have a complete degeneration for each value of SM.

The first step of the equation of motion for the Green
function GS−1/2,M−1/2

SM �t , t�� gives the equation

idGS−1/2,M−1/2
S,M �t,t��/dt = ��t − t����S,M��S,M� + �S − 1/2,M − 1/2��S − 1/2,M − 1/2�� + ��S − �S−1/2�GS−1/2,M−1/2

S,M �t,t��

+ 	5�
k

VkGS−1/2,M−1/2
S,M ��S − 1/2,M − 1/2��S − 1/2,M − 1/2�c�k↑� + 	5�

k

VkGS−1/2,M−1/2
S,M ��S,M��S,M�c�k↑�

+ 	5/�2S��
k

VkGS−1/2,M−1/2
S,M ��S,M − 1��S,M�c�k↓� , �6�

where the following notation has been used for the new Green functions that appear in Eq. �6�:

GA
B��C��D�c�k� = i��t� − t����B��A�t�; �C��D�c�k�t��� ,

and in all the cases, � � denotes the mean value in the ground state.
These new Green functions are calculated by closing up to second order in Vk their equations of motion, as explained in Ref.

16. In this way, the following expressions are obtained:

i
d

dt
GS−1/2,M−1/2

S,M ��S − 1/2,M − 1/2��S − 1/2,M − 1/2�ck↑�

= ��t − t����S,M��S − 1/2,M − 1/2�ck↑� + �kGS−1/2,M−1/2
S,M ��S − 1/2,M − 1/2��S − 1/2,M − 1/2�ck↑�

+ 	5Vk�1 − nk↑�GS−1/2,M−1/2
S,M �t,t�� , �7�

i
d

dt
GS−1/2,M−1/2

S,M ��S,M��S,M�ck↑� = − ��t − t����S,M��S − 1/2,M − 1/2�ck↑� + �kGS−1/2,M−1/2
S,M ��S,M��S,M�ck↑�

+ 	5Vk�nk↑�GS−1/2,M−1/2
S,M �t,t�� , �8�

i
d

dt
GS−1/2,M−1/2

S,M ��S,M − 1��S,M�ck↓� = − ��t − t����S,M − 1��S − 1/2,M − 1/2�ck↓� + �kGS−1/2,M−1/2
S,M ��S,M − 1��S,M�ck↓�

+ 	5/�2S�Vk�nk↓�GS−1/2,M−1/2
S,M �t,t�� . �9�


Equations �6�–�9� are Fourier transformed, and we take into account that for a nonmagnetic case �because of spin symmetry�,
the Green functions are independent of M, GS−1/2,M−1/2

SM ���=GS−1/2
S ���. Then, by using the following equation:

��S,M − 1��S − 1/2,M − 1/2�ck↓� =
	5/�2S�

�
Vk�

−�

�

d��f�����Im
GS−1/2

S ����
��� − �k�

,

we obtain GS−1/2
S ��� �which is independent of 
 and ��
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�� − �0 − 5�
k

Vk
2/�� − �k� − 5/�2S��

k

Vk
2�nk��

�� − �k�
GS−1/2

S ���

= ��SM��SM� + �S − 1/2,M − 1/2��S − 1/2,M − 1/2�� − 5/�2�S��
k

Vk
2

�� − �k�
�

−�

�

d��f�����Im
GS−1/2

S ����
��� − �k�

, �10�

valid for any S from 1 /2 to 5 /2. In Eq. �10�, �0=�S−�S−1/2,
and �nk��= f���k�=1 / �1+exp
��k−EF� /kBT�� is the Fermi–
Dirac distribution. On the other hand, the norm constraint
necessary to solve Eq. �10� is

�
M

��S,M��S,M� + �S − 1/2,M − 1/2��S − 1/2,M − 1/2�� = 1.

We have also checked that different interacting Hamiltonians
�Vkm dependent on m� also yield similar equations.

In the case of having a crystalline field splitting the
d-orbital energies, one has to calculate the Green function of
each degenerate resonance and obtain the total electron
charge combining the contributions of each case �in this ap-
proximation, we neglect the coupling between atomic levels
due to the crystalline field splitting, whose effect is assumed
to be small with respect to the Hund rule effect; otherwise,
all the Green functions of the degenerate resonance should
be coupled with each other�.

For n=6, 7, 8, 9, and 10, the hole picture is the appropri-
ate one. In this case, we find that the fluctuations d10↔d9,
d9↔d8, d8↔d7, d7↔d6, and d6↔d5 are equivalent to the
electron ones, d0↔d1, d1↔d2, d2↔d3, d3↔d4, and d4↔d5,
respectively, provided the energies � are changed by, −�.

III. RESULTS AND DISCUSSION

Equation �10� is the main result of this paper, showing
how the Kondo resonance depends on the atomic
occupancy n. This is mainly reflected in the term
5 / �2S��kVk

2nk� / ��−�k� appearing in Eq. �10�. The factor
5 / �2S� is basically controlling the weight of the Kondo reso-
nance. For large S, the Kondo peak decreases. This is seen in
the impurity density of states, ����= �1 /��Im GS−1/2

S ���,
shown in Fig. 1 for atomic charges between 0 and 5 �electron
picture� and in Fig. 2 for charges between 5 and 10 �hole
picture�. It is found that the Kondo resonance appears at
positive �negative� energies in the case of d occupancies be-
low �above� the half-filling shell, which is also in good
agreement with the trends observed when going from Ti to
Ni impurities in Ref. 11. The calculation has been performed
for a flatband approximation at T=6 K by considering a
level width �=0.01D and �0�=−0.1D.

The factor 1 / �2S�, reducing the weight of the Kondo reso-
nance as a function of the orbital occupancies, can be under-
stood in terms of the matrix elements Vk�SM ,
�� and

Ṽk�SM −1,��� introduced in Hamiltonian �4� and shown in
the Appendix. The crucial point to realize is how the spin
fluctuations fix the Kondo resonance. For instance, for the
case �5 /2,5 /2��1�⇔ �2,2��1� and the Green function G2,2

5/2,5/2,
the Kondo resonance is associated with the fluctuations
whereby electrons are transferred between states �2,2��1� and
�5 /2,3 /2��1� 
Eqs. �6� and �9��. This makes this contribution
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FIG. 1. �Color online� The impurity density of states ����
around the Fermi level for the cases d0↔d1 �solid line�, d1↔d2

�dash line�, d2↔d3 �dash-dot-dot line�, d3↔d4 �dash-dot line�, and
d4↔d5 �short dash line�. Inset: the same using a more extended
range of energy values. Atomic units are used.
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FIG. 2. �Color online� The same as in Fig. 2 for the cases
d10↔d9 �solid line�, d9↔d8 �dash line�, d8↔d7 �dash-dot-dot
line�, d7↔d6 �dash-dot line�, and d6↔d5 �short dash line�.
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proportional to Vk
2 /5, while for the case, say,

�1 /2,1 /2��5�⇔ �0,0��1�, that resonance is proportional to
Vk

2 /1. By considering all the cases shown in the Appendix,
we find the factor 1 / �2S� mentioned above. We conclude that
the reduction of the Kondo resonance weight as a function of
the orbital occupancy is due to the smaller overlap found
between fluctuating states for larger spin.

Finally, it is convenient to compare the Kondo tempera-
tures calculated in our model and in other different
approximations. In our approach, an analysis of the poles
associated with the Green function of Eq. �10� yields
TK=D exp�−4S���0� /N��, where we should take N=10
since this is the degeneracy of the states with S=1 /2
for the fluctuation d0↔d1 �this is the N-fold degenerate limit
of our model�. In the V2 approximation, one gets TK
=D exp�−2���0� /N�� for the N-fold degenerate model,
which is equivalent to the one found in this work by chang-
ing � with � / �2S�. If we assume that the same factor is
going to modify in a similar way the exact solution
calculated for the N-fold degenerate model 
where
TK�D�N� /�D�1/N exp�−���0� /N���, we conclude that, for
the ionic model presented in this paper, TK is proportional to

D�N�/2SD�1/N exp�− 2�S��0�/N�� . �11�

This equation embodies all the properties of the d-Kondo
resonances discussed in this paper. In particular, it shows
how TK decreases with S in such a way that the Kondo tem-
perature is the largest for charge fluctuations d0↔d1 and
d10↔d9, as already illustrated in Figs. 1 and 2.

IV. CONCLUSIONS

In conclusion, we have shown how to deduce, in the
Kondo problem, an ionic Hamiltonian using the first Hund
rule for transition metal impurities in a metal host in the limit
of an infinite-U value. This Hamiltonian has been analyzed
by means of an equation of motion method up to second
order in the metal-impurity interaction; comparison with the
N-degenerate model has allowed us to deduce its Kondo tem-
perature as a function of the d-orbital occupancy. We found
that this Kondo temperature has the largest value for n fluc-
tuating between 0 and 1 or between 10 and 9 electrons, and
the smallest one for fluctuations between 4 and 5 or 6 and 5
electrons.
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APPENDIX

The matrix elements of Hamiltonian �4� normalized to
	5Vk are shown in a diagrammatic way. Notice the degen-

eracy as a function of S: for a multiple degenerate case, only
one case is shown, as indicated by the particular superindex
introduced in the diagrams.

1rα ≡ = ⇔ 1qα ≡ = 2,...,5qα ≡ = ⇔ 1,..., 4pα ≡ =

(1)5 / 2,5 / 2 V (5/2,5/2)=1
)1(2,2

V~ (5/2,3/2)= 5/1 )2(2,2
(1)5 / 2,3 / 2 V (5/2,3/2)= 5/4 V (2,2)=1

)1(1,2 V~ (2,1)= 4/1 )1(2/3,2/3

V~ (5/2,1/2)= 5/2 )2(1,2 V (2,1)= 4/3
(1)5 / 2,1/ 2 )1(2/1,2/3

V (5/2,1/2)= 5/3 V~ (2,0)= 4/2

V~ (5/2,-1/2)= 5/3 )1(0,2 )2(0,2
(1)5 / 2, 1/ 2− V (2,0)= 4/2

V (5/2,-1/2)= 5/2 V~ (2,-1)= 4/3 )1(2/1,2/3 −

V~ (5/2,-3/2)= 5/4 )1(1,2 − )2(1,2 − V (2,-1)= 4/1
(1)5 / 2, 3 / 2− )1(2/3,2/3 −

V (5/2,-3/2)= 5/1 V~ (2,-2)= 1
)2(2,2 −

V~ (5/2,-5/2)=1 )1(2,2 −
(1)5 / 2, 5 / 2−

Single degeneracy Fourfold degeneracy

5,..,10pα ≡ = ⇔ 1,..,6jα ≡ =

)5(2/3,2/3 V (3/2,3/2)=1 7,..,10jα ≡ = ⇔ 1,.., 4iα ≡ =

)1(1,1 )7(1,1 V (1,1)=1

V~ (3/2,1/2)= 3/1 )1(2/1,2/1

)5(2/1,2/3 V (3/2,1/2)= 3/2 V~ (1,0)= 2/1

)1(0,1 )7(0,1

V~ (3/2,-1/2)= 3/2 V (1,0)= 2/1
)5(2/1,2/3 − )1(2/1,2/1 −

V (3/2,-1/2)= 3/1
)1(1,1 − V~ (1,-1)=1

V~ (3/2,-3/2)=1 )7(1,1 −

)5(2/3,2/3 −

Sixfold degeneracy Fourfold degeneracy

5iα ≡ = ⇔ 1α ≡

)5(2/1,2/1
V(1/2,1/2) =1

(1)0,0

V~ (1/2,-1/2)=1
(5)1/ 2, 1/ 2−

Single degeneracy
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